skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cotrufo, M Francesca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Carbon dioxide removal technologies such as bioenergy with carbon capture and storage (BECCS) are required if the effects of climate change are to be reversed over the next century. However, BECCS demands extensive land use change that may create positive or negative radiative forcing impacts upstream of the BECCS facility through changes to in situ greenhouse gas fluxes and land surface albedo. When quantifying these upstream climate impacts, even at a single site, different methods can give different estimates. Here we show how three common methods for estimating the net ecosystem carbon balance of bioenergy crops established on former grassland or former cropland can differ in their central estimates and uncertainty. We place these net ecosystem carbon balance forcings in the context of associated radiative forcings from changes to soil N2O and CH4fluxes, land surface albedo, embedded fossil fuel use, and geologically stored carbon. Results from long term eddy covariance measurements, a soil and plant carbon inventory, and the MEMS 2 process‐based ecosystem model all agree that establishing perennials such as switchgrass or mixed prairie on former cropland resulted in net negative radiative forcing (i.e., global cooling) of −26.5 to −39.6 fW m−2over 100 years. Establishing these perennials on former grassland sites had similar climate mitigation impacts of −19.3 to −42.5 fW m−2. However, the largest climate mitigation came from establishing corn for BECCS on former cropland or grassland, with radiative forcings from −38.4 to −50.5 fW m−2, due to its higher plant productivity and therefore more geologically stored carbon. Our results highlight the strengths and limitations of each method for quantifying the field scale climate impacts of BECCS and show that utilizing multiple methods can increase confidence in the final radiative forcing estimates. 
    more » « less
  2. ABSTRACT Managing soils to increase organic carbon storage presents a potential opportunity to mitigate and adapt to global change challenges, while providing numerous co‐benefits and ecosystem services. However, soils differ widely in their potential for carbon sequestration, and knowledge of biophysical limits to carbon accumulation may aid in informing priority regions. Consequently, there is great interest in assessing whether soils exhibit a maximum capacity for storing organic carbon, particularly within organo–mineral associations given the finite nature of reactive minerals in a soil. While the concept of soil carbon saturation has existed for over 25 years, recent studies have argued for and against its importance. Here, we summarize the conceptual understanding of soil carbon saturation at both micro‐ and macro‐scales, define key terminology, and address common concerns and misconceptions. We review methods used to quantify soil carbon saturation, highlighting the theory and potential caveats of each approach. Critically, we explore the utility of the principles of soil carbon saturation for informing carbon accumulation, vulnerability to loss, and representations in process‐based models. We highlight key knowledge gaps and propose next steps for furthering our mechanistic understanding of soil carbon saturation and its implications for soil management. 
    more » « less
  3. Abstract Identifying controls on soil organic carbon (SOC) storage, and where SOC is most vulnerable to loss, are essential to managing soils for both climate change mitigation and global food security. However, we currently lack a comprehensive understanding of the global drivers of SOC storage, especially with regards to particulate (POC) and mineral‐associated organic carbon (MAOC). To better understand hierarchical controls on POC and MAOC, we applied path analyses to SOC fractions, climate (i.e., mean annual temperature [MAT] and mean annual precipitation minus potential evapotranspiration [MAP‐PET]), carbon (C) input (i.e., net primary production [NPP]), and soil property data synthesized from 72 published studies, along with data we generated from the National Ecological Observatory Network soil pits (n = 901 total observations). To assess the utility of investigating POC and MAOC separately in understanding SOC storage controls, we then compared these results with another path analysis predicting bulk SOC storage. We found that POC storage is negatively related to MAT and soil pH, while MAOC storage is positively related to NPP and MAP‐PET, but negatively related to soil % sand. Our path analysis predicting bulk SOC revealed similar trends but explained less variation in C storage than our POC and MAOC analyses. Given that temperature and pH impose constraints on microbial decomposition, this indicates that POC is primarily controlled by SOC loss processes. In contrast, strong relationships with variables related to plant productivity constraints, moisture, and mineral surface availability for sorption indicate that MAOC is primarily controlled by climate‐driven variations in C inputs to the soil, as well as C stabilization mechanisms. Altogether, these results demonstrate that global POC and MAOC storage are controlled by separate environmental variables, further justifying the need to quantify and model these C fractions separately to assess and forecast the responses of SOC storage to global change. 
    more » « less
  4. Abstract In the past few decades, there has been an evolution in our understanding of soil organic matter (SOM) dynamics from one of inherent biochemical recalcitrance to one deriving from plant‐microbe‐mineral interactions. This shift in understanding has been driven, in part, by influential conceptual frameworks which put forth hypotheses about SOM dynamics. Here, we summarize several focal conceptual frameworks and derive from them six controls related to SOM formation, (de)stabilization, and loss. These include: (a) physical inaccessibility; (b) organo‐mineral and ‐metal stabilization; (c) biodegradability of plant inputs; (d) abiotic environmental factors; (e) biochemical reactivity and diversity; and (f) microbial physiology and morphology. We then review the empirical evidence for these controls, their model representation, and outstanding knowledge gaps. We find relatively strong empirical support and model representation of abiotic environmental factors but disparities between data and models for biochemical reactivity and diversity, organo‐mineral and ‐metal stabilization, and biodegradability of plant inputs, particularly with respect to SOM destabilization for the latter two controls. More empirical research on physical inaccessibility and microbial physiology and morphology is needed to deepen our understanding of these critical SOM controls and improve their model representation. The SOM controls are highly interactive and also present some inconsistencies which may be reconciled by considering methodological limitations or temporal and spatial variation. Future conceptual frameworks must simultaneously refine our understanding of these six SOM controls at various spatial and temporal scales and within a hierarchical structure, while incorporating emerging insights. This will advance our ability to accurately predict SOM dynamics. 
    more » « less